This article was downloaded by:

On: 14 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Molecular Simulation

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713644482

Differences Between High-*T*<*sub*>*c*</*sub*> Oxides Containing Six-, Five-, Four- And Two-Fold Coordinated Copper

N. L. Allan^a; P. S. Baram^a; W. C. Mackrodt^b; M. J. Turner^a
^a School of Chemistry, University of Bristol, Bristol, UK ^b ICI Chemicals and Polymers Ltd., Cheshire, UK

To cite this Article Allan, N. L. , Baram, P. S. , Mackrodt, W. C. and Turner, M. J.(1992) 'Differences Between High-T < sub > c < /sub > Oxides Containing Six-, Five-, Four- And Two-Fold Coordinated Copper', Molecular Simulation, 9: 2, 115 — 128

To link to this Article: DOI: 10.1080/08927029208050605 URL: http://dx.doi.org/10.1080/08927029208050605

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

DIFFERENCES BETWEEN HIGH-T_C OXIDES CONTAINING SIX-, FIVE-, FOUR- AND TWO-FOLD COORDINATED COPPER

N.L. ALLANa, P.S. BARAMa, W.C. MACKRODTb and M.J. TURNERa

^aSchool of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK bICI Chemicals and Polymers Ltd., P.O. Box 8, The Heath, Runcorn, Cheshire, WA7 4QD, UK

(Received December 1991; accepted February 1992)

Atomistic simulation techniques are used to investigate the defect properties and redox energies of a series of ternary cuprates with different copper coordinations to oxygen. In particular, results are reported for La, CuO₄, LaNdCuO₄, Nd₂CuO₄, Y₂CuO₄ and YBa₂Cu₃O₆, amongst others. The implications for the high-temperature superconducting behaviour of these oxides when made non-stoichiometric are discussed in detail. We compare "hole" and "electron" superconductors. In addition we suggest that the variation of T_C with oxygen content, X, for $YBa_2Cu_3O_{6+X}$ and $Y_{1-2}Ca_2Ba_2Cu_3O_{6+X}$ is linked to the two very different environments of Cu in this system.

KEY WORDS: Superconducting oxides, defects, lattice simulation

1 INTRODUCTION

Since the historic discovery of high temperature superconductivity in La₂CuO₄ $(T_C \approx 30 \,\mathrm{K})$ [1], and subsequently in other oxides, most attention has been focussed on the details of possible coupling mechanisms. The ceramic properties of these systems have attracted considerably less discussion. It has been shown in earlier work [2-5] by ourselves and others that atomistic lattice simulations of the type used to examine conventional ceramics can be used to calculate important normal-state properties of high- T_c oxides which are clearly relevant to superconducting behaviour. Recent studies of La₂CuO₄ and Nd₂CuO₄ [2-4], for example, have highlighted differences between the calculated defect chemistry of these two materials which can be used to rationalise why the former cuprate exhibits superconductivity apparently only via holes and the latter only via electrons.

In the present paper we consider a wide range of cuprates with different copper coordinations and relate their defect properties to their superconducting behaviour. Particular attention is paid to the "parent" oxides La₂CuO₄ (6-coordinate Cu), LaNdCuO₄ (5-coordinate Cu), Nd₂CuO₄ (4-coordinate Cu) and YBa₂Cu₃O₆ (both 2and 5-coordinate Cu). All of these systems are made superconducting by aliovalent substitution of La³⁺/Nd³⁺/Y³⁺. Of these four cuprates Nd₂CuO₄ is the only electron superconductor (when doped with Ce4+ or Th4+) whilst the remainder are hole superconductors (when oxidised or doped with Ca2+ and other divalent cations). We also present results for Y₂CuO₄ which has been synthesised recently at high pressure [6] and possesses the same crystal structure as Nd₂CuO₄. Finally, the different variations of T_C with oxygen content, X, for $YBa_2Cu_3O_{6+X}$ and $Y_{1-Z}Ca_ZBa_2Cu_3O_{6+X}$ are discussed and linked tentatively to the two very different environments of Cu in this system.

2 THEORETICAL METHODS

Static simulations of perfect and defective lattices reported here are based on methods similar to those used in recent studies of high- T_C oxides [2–5] and also, somewhat earlier, for a wide range of ceramic oxides [7]. The calculations are formulated within the ionic model, in which ions are assigned charges in accord with the accepted rules of chemical valence, e.g., 2+ for Cu, 2- for O, 3+ for La, Nd or Y. One of the advantages of the ionic model is that it enables a simple definition of valence band holes in terms of Cu³⁺ or O⁻ and defect electrons as Cu⁺. Two-body, electron-gas potentials [8] are used consistently [4] to specify the non-Coulombic interactions between the ions and the Dick-Overhauser shell model [9] incorporated to allow for the treatment of the electronic polarisation of the lattice.

The static simulations of perfect lattices give the crystal structure and lattice energy of the low-temperature phase. At 0 K, the lattice structure is determined by the condition that it is in mechanical equilibrium, i.e.,

$$\partial E/\partial X_i = 0$$

in which E is the internal energy, and the $\{X_i\}$ are the variables that define the structure – the lattice vectors, the atomic positions in the unit cell, and, in the case of the shell model, the shell displacements. The last of these represent the electronic polarization of those ions which are not at a centre of inversion symmetry in the lattice and, for polarizable ions such as O^{2-} or Ba^{2+} , can make an appreciable contribution to the internal energy.

The treatment of the defective lattice follows the usual two-region approach [10]. The essential idea is the minimisation of the total energy of the defective system by a relaxation of the nuclear positions (and shell displacements) around the defect. The relaxation is assumed to be largest close to the defect and to fall off fairly quickly with distance. The crystal is divided into an inner region, immediately surrounding the defect, and an outer region. In the former the elastic equations for the force are solved explicitly to obtain the relaxations. In the outer region these are estimated using an approximation originally due to Mott and Littleton [11].

3 CRYSTAL STRUCTURES

Elements of the perovskite structure, which provide the putative superconducting 2-dimensional CuO_2 planes, appear to be essential for high-temperature superconductivity in cuprate systems. Copper ions in these planes can be 6-coordinate (La_2CuO_4 , $Bi_2Sr_2CuO_6$), 5-coordinate ($LaNdCuO_4$, $YBa_2Cu_3O_6$) or 4-coordinate (Nd_2CuO_4): the corresponding crystal structures are shown in Figure 1. The highest T_C 's appear to be associated with a double layer of CuO_5 pyramids in which the Cu is 5-coordinate. This unit is found in $YBa_2Cu_3O_{6+X}$ and also, for example, in $Bi_2Sr_2CaCu_2O_8$ and $Tl_2Ba_2Ca_2Cu_3O_{10}$, but not in La_2CuO_4 nor Nd_2CuO_4 .

As shown in Figure 1 YBa₂Cu₃O₇ also possesses 1-dimensional CuO₂ chains in which the Cu is 4-coordinate. Accordingly we have also studied Sr₂CuO₃ [12], in

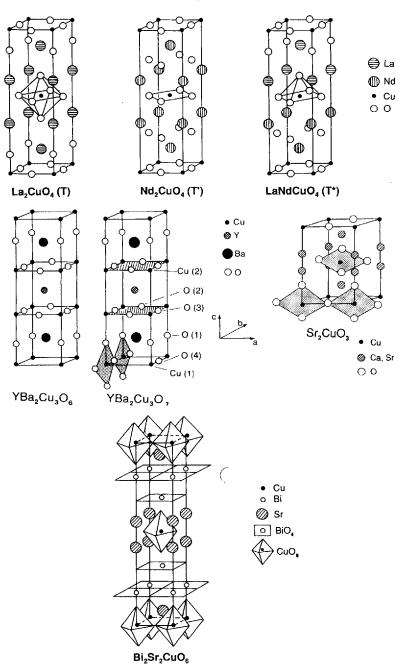


Figure 1 The crystal structures of tetragonal La_2CuO_4 (T), $LaNdCuO_4$ (T), Nd_2CuO_4 (T), Sr_2CuO_3 , $Bi_2Sr_2CuO_6$, $YBa_2Cu_3O_6$, and $YBa_2Cu_3O_7$. In $YBa_2Cu_3O_7$ the 2-dimensional CuO_2 planes are shown hatched and the 1-dimensional CuO_2 chains shaded; the Cu and O atom labelling used is also shown.

Table I Calculated and experimental lattice constants of tetragonal La₂CuO₄, orthorhombic La₂CuO₄, LaNdCuO₄, Nd₂CuO₄, Sr₂CuO₅, Y₂CuO₄, and YBa₂Cu₁O₆. Experimental values are in parentheses.

Oxide	Structural type		Lattice constants (Å)		
			$\overline{a_0}$	b_0	c_0
La ₂ CuO ₄	Orthorhombic	K ₂ NiF ₄	5.427 (5.406)	5.352 (5.370)	12.994 (13.150) [40]
La ₂ CuO ₄	Tetragonal	$K_2 NiF_4 (T)$	3.783 (3.778)	-	13.050 (13.093) [41]
(La ₂ CuO ₄	T^{ullet}		3.880		12.415)#
(La ₂ CuO ₄	Nd ₂ CuO ₄		3.972		11.999)*
LaNdCuO ₄	T^*		3.880		12.42
•			(3.891)		(12.46) [13]*
Nd ₂ CuO ₄	$Nd_2CuO_4(T')$		3.898		11.985
			(3.939)		(12.147) [42]
Y ₂ CuO ₄	Nd_2CuO_4		3.830	_	11.57
			(3.864)	_	(11.70) [6]
Sr ₂ CuO ₃	Sr_2CuO_3		3.892	3.474	13.07
			(3.91)	(3.48)	(12.69) [43]
Bi ₂ Sr ₂ CuO ₆	Bi ₂ Sr ₂ CuO ₆		3.724	_	25.00 [44]
			(3.79)		(24.62) [45]
YBa ₂ Cu ₃ O ₆	$YBa_{2}Cu_{3}O_{6}$		3.900	_	11.82
			(3.854)		(11.82) [18]

Calculated using different Cu(1)-O and Cu(2)-O potentials. See the text.

The reported lattice constants are for La_{1,2}Nd_{0.8}CuO₄ ** Phases not observed experimentally.

which 2-dimensional CuO₂ planes are absent and the structure consists solely of such CuO₂ chains.

An important test of any theoretical approach to these materials is the accurate calculation of the crystal structures. Table 1 lists the computed and experimental lattice constants of tetragonal La₂CuO₄, Nd₂CuO₄, Bi₂Sr₂CuO₆, Y₂CuO₄ and Sr₂CuO₃ in which it is seen that calculated lattice constants are within 2% of the measured values for all of these compounds.

Bringley et al. [13] have determined the structures and lattice constants of the systems $\text{La}_{2-X} \text{Nd}_X \text{CuO}_4$ ($0 \le X \le 2$). For $X < \approx 0.4$, the $\text{La}_2 \text{CuO}_4$, or so-called T, structure is adopted in which the Cu is 6-coordinate and the lanthanide 9-coordinate to oxygen. For $X > \approx 0.5$ the $\text{Nd}_2 \text{CuO}_4$ T' structure dominates, in which the Cu is 4-coordinate and the lanthanide 8-coordinate to O. In the transformation from T to T', c_0 decreases while a_0 increases, a trend which is also reproduced in the calculated lattice constants. In addition the different c_0/a_0 ratios of the $\text{La}_2 \text{CuO}_4$ and $\text{Nd}_2 \text{CuO}_4$ structures are reproduced. For $\text{Nd}_2 \text{CuO}_4$ the experimental and calculated values of c_0/a_0 are 3.08 and 3.07 respectively; for $\text{La}_2 \text{CuO}_4$ the corresponding values are 3.47 and 3.45.

In the region $X \approx 1.0$, a third phase is observed together with the T and T' structures, namely the T^* structure. As is clear from Figure 1, this is a hybrid of T and T' in that the unit cell is half T-type and half T'-type. Cu is fivefold coordinate and there are two inequivalent lanthanide sites – 9-coordinate M sites in the T-like half of the unit cell and 8-coordinate M' sites in the T' half. Our calculations on LaNdCuO₄ indicate a preferential occupation of the M and M' sites by La and Nd respectively. The difference in lattice energy between this arrangement and that in which Nd occupies M, La M' sites is $\approx 0.4 \, \mathrm{eV}$. The calculated lattice constants for the lowest

energy structure are listed in Table 1, together with the experimental values for La_{1.2}Nd_{0.8}CuO₄ reported by Bringley *et al.* [13]. Lanthanum and rare-earth site ordering has also been observed [14, 15] in the T^* phases adopted by La_{2-X-Y}R_XSr_YCuO₄ (R = Sm, Eu, Gd, Tb). However, the difference in the radii of the two lanthanide ions in these systems is larger than in the case of La and Nd ($r(\text{La}^{3+}) \approx 1.20 \,\text{Å}$, $r(\text{Nd}^{3+}) \approx 1.16 \,\text{Å}$, $r(\text{Sm}^{3+}) \approx 1.09 \,\text{Å}$ [16]), and this mismatch will favour such an ordering.

To consider the effects of a change in structure without a change in chemical composition, we have also computed lattice constants (Table 1) for La_2CuO_4 itself in the T and T structures. These phases have not been observed for this compound. The qualitative variations of a_0 , c_0 and the c_0/a_0 ratio from one structure to another are the same as those reported for the different structures in the $\text{La}_{2-X}\text{Nd}_X\text{CuO}_4$ system.

Figure 1 also shows the structures of YBa₂Cu₃O₆ and YBa₂Cu₃O₇. In these materials Cu is 5-coordinate to O in the CuO₂ planes with O(1), the apical oxygen, part of both the CuO₅ pyramids and the Cu-O chains. In YBa₂Cu₃O₆ the O(4) and O(5) sites in the "basal" plane are unoccupied, whilst the Cu(1) position in this plane is 2-fold linearly coordinated to O. Since Cu(1) and Cu(2) have different environments it is important to establish the charge state of copper at these two sites. In doing this we have assumed identical short range interionic potentials to those used to investigate La₂CuO₄, Y₂CuO₄, Y₂Cu₂O₅, and Y₂BaCuO₅ [2-4, 17]. In systems such as these, the presence of a single Cu sublattice in conjunction with charges based on accepted chemical valence leads to the normal assignment of +2 for Cu (and -2) for O. However, for systems such as YBa₂Cu₃O_{6+X}, in which there are inequivalent Cu sublattices, a number of different assignments of charge are possible within an overall charge balance between cations and anions. In this case of YBa₂Cu₃O₆, the lattice energy for an assignment of charges of +1 and +2 to Cu(1) and Cu(2) respectively is over 6 eV lower than that for an equal assignment of +5/3 to both sublattices. The calculated value of a_0 (3.900 Å) is within 1.2% of experiment (3.854 Å) [18] and that of c_0 (11.59 Å) is 2% smaller than that observed (1.182 Å) [18]. These results suggest the presence of both linearly-coordinated Cu(I) and pyramidally-coordinated Cu(II) which is entirely consistent with the band structure calculations of, for example, Temmerman et al. [19].

In view of the lower charge and coordination of Cu(1) it is not unreasonable that the Cu(1)-O short-range potential should be somewhat more repulsive than the Cu(2)-O potential. This suggests a small modification of the former, $V_{\text{Cu(1)-O}}(R)$, which we have implemented simply by writing,

$$V_{\text{Cu(1)-O}}(R) = V_{\text{Cu(2)-O}}(R - R_0)$$

in which R_0 is positive and determined empirically by fitting to the experimental value of c_0 . The calculated value of a_0 is essentially unchanged by this procedure. As discussed later, the very different charges on the Cu ions are crucial in determining the defect and consequently the superconducting properties of $YBa_2Cu_3O_{6+X}$.

4 ELECTRONIC DEFECTS AND REDOX BEHAVIOUR

The nature and energetics of the electronic defects are major factors which control the properties of high temperature superconductors. La_2CuO_4 (T structure and 6-coordinate Cu) leads to "hole" superconductors either by partial substitution of La by Ca, Sr, Ba or Na to give materials of the type $La_{2-x}Sr_xCuO_4$ [20], or by oxidation to form

La₂CuO_{4+X} [21, 22]. Compounds with the T' structure (4-coordinate Cu), on the other hand, lead to "electron" superconductors when doped with either 4+ cations or F⁻ ions to give materials such as Nd_{1.85}Ce_{0.15}CuO₄ [23] and Nd₂CuO_{3.6}F_{0.4} [24]. Like T structures, T^* systems (5-coordinate Cu) only superconduct when doped p-type, as in Nd_{1.32}Sr_{0.41}Ce_{0.27}CuO₄ [25] and La_{2-X-Y}R_XSr_YCuO₄ (R = Sm, Eu, Gd) [14, 15].

In all high- T_C materials the charge carriers are extrinsic, i.e., superconductivity involves holes or defect electrons and atomistic simulation techniques allow an estimation of the formation energies of these defects. Within the framework of an ionic model, valence band holes are described in localised terms as Cu^{3+} (h_{Cu}) or O^- (h_O) and defect electrons as Cu^+ (e_{Cu}). The formation energy of these defects involves a contribution from the ionisation potential/electron affinity of the appropriate ion in addition to a lattice energy term (including the effects of relaxation) and a band contribution, in the case of delocalised carriers (large polarons).

Defect energies in which both cores and shells are relaxed are often referred to as "thermal" energies in that they correspond to lattices in thermal equilibrium. The corresponding energies in which only the shells are allowed to relax are referred to as "optical" energies. In the present context of electronic defects in oxides, the difference between "optical" and "thermal" energies is important because it permits a quantitative distinction to be made between descriptions of free carriers (either holes or electrons) in the large $({}^{1}h_{Cu}, {}^{1}h_{O}, {}^{1}e_{Cu})$ and small $({}^{s}h_{Cu}, {}^{s}h_{O}, {}^{s}e_{Cu})$ polaron limits [26]. Full details of all the relevant terms have been given in our earlier work [2–4]; here for 5-coordinate Cu we have used the same band contributions as for 4-coordinate Cu [3]. As mentioned previously [4] the concept of the polaron involves the coupling of the free carrier to the oscillating electric field of a vibrating polar lattice and so is essentially dynamic in nature. The justification of static calculations is that a static description (the zero-frequency limit of the dynamic case) contains all the essential physics of the problem [27, 28].

In the binary oxides formed by the elements adjacent to the Cu in the Periodic Table, holes are essentially O 2p in character in ZnO and 3d in character in the transition metal oxides FeO, CoO and NiO. It might be anticipated, therefore, that holes in Cu oxides are of mixed character.

Table 2 collects together the calculated hole and defect electron formation energies for a large number of cuprates from the present and previous work [2-4, 12, 17]. The values listed are for large or small polarons according to whichever is lower. Figure 2 shows graphically the variation of these quantities with copper coordination for a large number of these systems.

Our estimates of hole energies, and from these the essential character of the lowest energy holes, indicate a strong dependence on crystal structure and/or Cu coordination. Furthermore, we find a greater variation with local environment for Cu holes (and defect electrons) than O holes. In La₂CuO₄ and Bi₂Sr₂CuO₆, in which the Cu coordination is 6-fold, calculations favour holes with Cu 3d character; for systems containing 4-fold coordinated Cu, on the other hand, whether in CuO₂ planes, as in Nd₂CuO₄ or Y₂CuO₄, or in CuO₂ chains, as in Ca₂CuO₃ or Sr₂CuO₃, O 2p holes are found to be lower in energy. In YBa₂Cu₃O₆ and LaNdCuO₄ containing Cu in 5-fold coordination, Cu holes appear to be favoured, although the difference in energy between Cu and O holes is smaller than in La₂CuO₄. The values for La₂CuO₄ in the hypothetical T and T' structures are entirely in keeping with those of LaNdCuO₄ and Nd₂CuO₄ respectively which suggest that Cu-coordination is more important that the

Table 2 Estimated hole and defect formation energies for a wide range of ternary and quaternary cuprates (eV). The notation used is such that, for example, ${}^{1}h_{Cu}$ denotes a large polaron hole on Cu. The values given are for small or large polarons, whichever is the lower. For YBa₂Cu₁O₆ the values given refer to holes and defect electrons in the CuO₂ planes.

Compound	Lowest energy holes				Defect electrons	
$La_2CuO_4(T)$	¹h _{Cu}	1.5	$^{1}h_{\mathrm{O}}$	3.0	se _{Cu}	2.7
$(La_2CuO_4(T^*)$	sh _{Cu}	2.5	$^{1}h_{\mathrm{O}}$	3.1	*e _{Cu}	0.8)*
$(La_2CuO_4(T'))$	$^{\rm s}h_{\rm O}$	3.2	$^{\mathrm{s}}h_{\mathrm{Cu}}$	3.8	$^{\mathrm{s}}e_{\mathrm{Cu}}$	-2.4)*
$LaNdCuO_4(T^*)$	$^{\rm s}h_{\rm Cu}$	2.2	$^{1}h_{\Omega}$	3.0	$^{\mathrm{s}}e_{\mathrm{Cu}}$	0.5
Nd ₂ CuO ₄	$^{1}h_{O}$	3.1	$^{\rm s}h_{\rm Cu}$	4.2	$^{\mathrm{s}}e_{\mathrm{Cu}}$	-0.9
Y ₂ CuO ₄	$h_{\rm O}$	3.8	h_{Cu}	4.3	$^{\mathrm{s}}e_{\mathrm{Cu}}$	- 0.4
Ca ₂ CuO ₃	$h_{\mathbf{O}}$	3.3	$^{1}h_{Cu}$	4.2	$^{\mathrm{s}}e_{\mathrm{Cu}}$	-0.7
Sr ₂ CuO ₃	h_{O}	2.4	$^{1}h_{\mathrm{Cu}}$	3.9	$^{\mathrm{s}}e_{\mathrm{Cu}}$	-0.8
Al ₂ CuO ₄	$^{1}h_{\mathrm{Cu}}$	5.8	$h_{\rm O}$	6.4	$^{1}e_{\mathrm{Cu}}$	-0.6
Bi ₂ Sr ₂ CuO ₆	$^{1}h_{Cu}$	1.4	$^{1}h_{O}$	2.2	$^{\mathrm{s}}e_{\mathrm{Cu}}$	2.7
YBa ₂ Cu ₃ O ₆	$^{\mathrm{s}}h_{\mathrm{Cu}(2)}^{-}$	2.6	$^{1}h_{O(2)}$	3.3	$^{\mathrm{s}}e_{\mathrm{Cu}(2)}$	1.8

[#]Phases not observed experimentally

size of the lanthanide ion in determining the energies of electronic defects. Finally, the hole energies for the non-superconductor Al₂CuO₄ [3], which possesses the spinel structure (no CuO₂ planes), in which the Cu is tetrahedrally coordinated to O, are much larger than those for any of the other systems.

It is important to emphasise that the relatively crude estimates of hole (and defect electron) energies which are obtained from atomistic simulations cannot serve the role of electronic structure calculations on these materials. The differences in the calculated energies of Cu and O holes are small bearing in mind the approximations made in the calculations, which suggests that holes in all these materials are of mixed character or that both types of hole might coexist. Nevertheless we find clear variations with Cu coordination, which suggest an increase in the O character of holes with decreasing Cu coordination.

It is evident from Table 2 and Figure 2 that the hole formation energies in La, CuO4 and Bi₂Sr₂CuO₆ (6-coordinate Cu) is considerably smaller than in any of the other systems. Conversely the formation energies of defect electrons appear to be lowest for systems in which the Cu is 4-coordinate. This has very important consequences for the associated redox energies of these compounds. Since the charge carriers in high- T_C oxides are extrinsically controlled, superconductivity is intimately connected with the energetics of the redox reactions which control the non-stoichiometry in the presence of oxygen and the equilibrium between lattice and electronic defects. Using the usual Kroger-Vink notation the most important of these reactions [4] are:

$$\frac{1}{2}O_2(g) = O_i'' + 2h' \tag{1}$$

$$2M_{M}^{\chi} + Cu_{Cu}^{\chi} + 2O_{2}(g) = 2V_{M}^{"''} + V_{Cu}^{"} + 8h + M_{2}CuO_{4}$$

$$O_{0}^{\chi} = \frac{1}{2}O_{2}(g) + V_{0}^{"} + 2e'$$
(3)

$$O_0^X = \frac{1}{2}O_2(g) + V_0^{-} + 2e^{\prime} \tag{3}$$

$$V_0^{-} + \frac{1}{2}O_2(g) = O_0^X + 2h^-$$
 (4)

$$O_i'' = \frac{1}{2}O_2(g) + 2e'$$
 (5)

$$2V_M''' + V_{Cu}'' + 4O_0^X = 2O_2(g) + 8e'$$
 (6)

with associated energies E_1 - E_6 respectively. The calculated values of these for

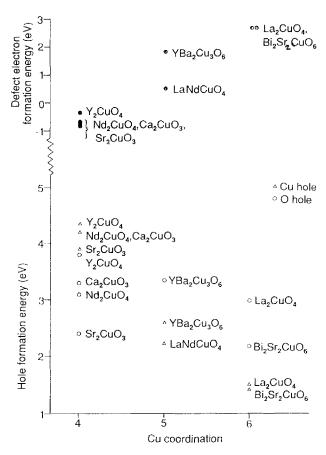


Figure 2 Calculated hole and defect electron formation energies (eV) for a range of cuprates (containing CuO₂ planes and/or chains) versus the copper coordination to oxygen.

 La_2CuO_4 , $LaNdCuO_4$, Nd_2CuO_4 and $YBa_2Cu_3O_6$ are listed in Table 3. The figures in parentheses are estimates of E_4-E_6 at 1000 K (approximately the synthesis temperature of these materials). These have been calculated allowing for the significant contribution to the total free energies of these reactions for the entropic contribution of $O_2(g)$ and assuming that all the relevant defect energies are independent of temperature.

A puzzling feature of high- T_C oxides, for which no fundamental explanation in terms of electronic structure considerations appears to have been forthcoming, is why La_2CuO_4 apparently leads only to "hole" superconductors and Nd_2CuO_4 only to "electron" superconductors, despite the similarity in their crystal structures. However, a tentative explanation lies in the nature of their redox equilibria. Substitution of RE^{3+} (RE = La, Nd) by divalent ions in principle leads to charge compensation by either oxygen vacancies or holes, and substitution by 4+ ions to cation vacancies, oxygen interstitials or defect electrons. The criteria for electronic compensation by

Table 3 Calculated redox energies (eV) for tetragonal La₂CuO₄, LaNdCuO₄, Nd₂CuO₄, Y₂CuO₄ and YBa2Cu3O6. The details of reactions 1-6 are given in the text. The energies all refer to 0 K except for those in parentheses which relate to 1000 K.

Energy	La ₂ CuO ₄	LaNdCuO ₄	Nd ₂ CuO ₄	Y ₂ CuO ₄	$YBa_2Cu_3O_6$
$\overline{E_1}^{\dagger}$	0.7	1.4	3.1	5.4	-0.5#
$E_2^{'}$	4.5	9.5	18.6	23.9	13.5
E_3	9.9	6.3	4.2	4.9	8.9
$\vec{E_4}$	-1.5(-0.3)	-0.9(0.3)	0.2 (1.4)	1.9 (3.1)	-0.1(1.1)
$\vec{E_5}$	7.7 (6.5)	4.0 (2.8)	1.1(-0.1)	1.4 (0.2)	9.2 (8.0)
$\vec{E_6}$	29.1 (24.3)	12.2 (7.3)	-1.0(-5.8)	3.3(-1.5)	39.3 (34.5)

either holes or defect electrons are determined by the values of E_4 - E_6 and hence to the relative formation energies of lattice and electronic defects.

It is clear from Table 3 that oxygen vacancies in La₂CuO₄ are unstable with respect to the formation of holes in oxygen deficient La₂CuO₄, whereas cation vacancies are calculated to be stable with respect to electrons in the corresponding cation deficient systems. From this it can be shown that the solution of CaO, SrO and BaO in La_2CuO_4 leads to systems of the type $La_{2-X}M_XCuO_4$, in which the impurity defects M'_{La} are compensated by holes, rather than $La_{2-X}M_XCuO_{4-X/2}$ or $La_2Cu_{1-X}M_XO_4$. On the other hand, holes are unstable with respect to oxygen vacancies in oxygendeficient Nd₂CuO₄ and electrons stable with respect to cation vacancies in cationdeficient material so that divalent impurities leads to systems of the type $Nd_{2-X}M_XCuO_{4-X/2}$ and 4-valent impurities to $Nd_{2-X}M_XCuO_4$ above 1000 K. In summary, La₂CuO₄ is readily oxidised, Nd₂CuO₄ readily reduced.

The behaviour of LaNdCuO₄ is intermediate between that of La₂CuO₄ and Nd₂CuO₄. Holes are stable with respect to oxygen vacancies at low temperatures and defect electrons unstable with respect to lattice defects; in this the T^* structure is more similar to T than to T' which, as is mentioned at the beginning of this section, rationalises why the T^* structure only superconducts when doped p-type. The increase in E₄ in the series La₂CuO₄-LaNdCuO₄-Nd₂CuO₄ also explains why oxygen treatment is needed for bulk superconductivity in the T* phase [29]. In summary, the calculated redox energies show in a striking way how, solely on stability grounds, La₂CuO₄ and LaNdCuO₄ (6- and 5-coordinate Cu) would be expected to lead to hole superconductivity and Nd₂CuO₄ (4-coordinate Cu) to high-T_C electron superconductivity.

5 Y₂CuO₄

Y₂CuO₄ has been prepared recently by Okada et al. [16] at high pressure and found to possess the Nd_2CuO_4 structure (4-coordinate Cu) as predicted somewhat earlier by Allan *et al.* [3]. However, since Y^{3+} is considerably smaller than Nd^{3+} ($r(Nd^{3+}) \approx$ 1.16 Å, $r(Y^{3+}) \approx 1.015$ Å [16]) it would seem to be of interest to compare the predicted defect chemistry of the two materials.

The calculated formation energies of electronic defects and the redox energies given in Tables 2 and 3 respectively show that the two compounds generally exhibit similar behaviour. Hole and defect electron energies are found to be larger in Y₂CuO₄ than

^{*}For YBa₂Cu₃O₆ the energies listed refer to reactions analogous to those for the M₂CuO₄ systems [17].

†Calculated lowest energy interstitial oxygen positions are, with reference to Figure 1, $(0, 0.5, \approx 0.25)$ (La₂CuO₄), $(0, 0.5, \approx 0.75)$ (LaNd-CuO₄), $(0, 0. \approx 0.25)$ (Nd₂CuO₄, Y₂CuO₄), (0, 0.5, 0) (YBa₂Cu₃O₆).

*In this case E_1 is the value for the formation of a basal plane interstitial oxide ion bound to 2 Cu(1) holes. See Section 6.

in Nd_2CuO_4 ; however in both materials holes are predicted to be unstable with respect to the formation of oxygen vacancies at all temperatures, with E_4 larger for Y_2CuO_4 than Nd_2CuO_4 . E_6 is also predicted to be considerably greater for Y_2CuO_4 than for Nd_2CuO_4 . In Y_2CuO_4 defect electrons are predicted to be unstable with respect to cation vacancies and oxygen interstitials at 0 K. allowing for entropy effects at higher temperatures defect electrons are found to be just stable with respect to lattice defects at temperatures greater than 1000 K. Since the estimates of the redox energies involve contributions from a large number of terms, the stability of defect electrons at elevated temperatures remains unclear.

Our calculations therefore predict that Y_2CuO_4 will not lead to hole superconductors whilst the possibility of electron superconductivity remains open. The calculated solution energies for substitution of Y^{3+} by Ce^{4+} , Th^{4+} and Zr^{4+} are considerably higher than the corresponding values for Nd_2CuO_4 , so whether the critical carrier concentration can be achieved by doping is also uncertain. In view of the smaller size of Y^{3+} , doping with a smaller 4+ cation might be considered. As yet there appear to be no reports of the properties of doped Y_2CuO_4 , including the absence or presence of superconductivity, but clearly experimental studies would be very valuable. Thus, at present, the question as to whether all M_2CuO_4 systems with the Nd_2CuO_4 structure might lead to electron superconductors remains unresolved.

6 YBa₂Cu₃O₆

As our last example we consider the calculated defect chemistry of YBa₂Cu₃O₆, which can be regarded as the "parent" oxide of YBa₂Cu₃O_{7-X}, the first system found to possess a T_C ($\approx 90\,\mathrm{K}$) at liquid nitrogen temperatures [30]. With reference to Figure 1, YBa₂Cu₃O₇ can be considered formally as derived from semiconducting YBa₂Cu₃O₆ by the doping of the vacant O(4) site by oxygen. As noted previously, in the context of the present paper YBa₂Cu₃O₆ possesses both 5-coordinated Cu (cf. the T^* structure of LaNdCuO₄) and 2-coordinated Cu, which electronic structure [19] and our atomistic simulation studies indicate are in different oxidation states – the former Cu(II), the latter Cu(I).

Charge carriers in YBa₂Cu₃O_{6+X} are formed not by aliovalent substitution of Y³⁺ (cf. La_{2-X}Sr_XCuO₄ and Nd_{2-X}Ce_XCuO₄) but by oxygen incorporation (cf. La₂CuO_{4+X}). The variation of T_C with oxygen content X [18, 31] shown in Figure 3 is of particular interest and invites theoretical explanation. There is considerable variation between samples prepared by different techniques, and in particular, between samples are prepared by quenching from high temperature and those prepared by low temperature reduction of YBa₂Cu₃O₇. However despite these differences it is generally accepted that high T_C behaviour does not occur for $X < \approx 0.3$. In contrast, superconductivity has been observed at $\approx 50 \, \text{K}$ in Y_{1-Z}Ca_ZBa₂Cu₃O₆ [32, 33], in which the charge carriers are introduced by the substitution of Y³⁺ by Ca²⁺, as in La_{2-X}Ca_XCuO₄. Figure 3 also shows the variation of T_C with T_C for Y_{1-Z}Ca_ZBa₂Cu₃O_{6+X}. The superconducting properties of Yb_{1-Z}Ca_Z(Ba_{0.8}Sr_{0.2})₂Cu₃O_{6+X}, reported recently by Wada et al. [34], are very similar to those of Y_{1-Z}Ca_ZBa₂Cu₃O_{6+X}, in that these systems are superconducting even for very small T_C

Calculated hole formation energies in YBa₂Cu₃O₆ (Table 1 – see also Reference 17) shows that the lowest energy free carrier to be a Cu hole in the (super)conducting CuO₂ planes. Oxygen holes in the CuO₂ planes are predicted to have similar energies

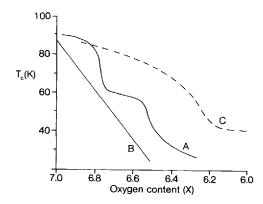


Figure 3 Schematic variation of T_C with oxygen content X for $YBa_2Cu_3O_{6+X}$ samples prepared by different techniques (A [18], B [31]) and for $Y_{0.7}Ca_{0.3}Ba_2Cu_3O_{6+X}$ (C [33]).

(cf. the comparable calculated hole energies of compounds with the T^* structure), as are holes at the O(1) apical position ($\approx 2.8 \,\mathrm{eV}$), allowing for the uncertainties associated with terms that contribute to the total energy of formation. As with $\mathrm{La_2CuO_4}$, the calculated redox energies $E_1 - E_6$ (Table 3) indicate that holes are stable with respect to the formation of oxygen vacancies and defect electrons unstable with respect to cation vacancies and oxygen interstitials.

The calculated energy, E_1 ($\approx -0.5 \, \text{eV}$), for the incorporation of oxygen:

$$\frac{1}{2}O_2(g) = O_i'' + 2h$$

is lower than the corresponding value for La₂CuO₄ and compares with the experimental value of $\sim -1.0\,\text{eV}$ [35, 36]. The lowest energy interstitial position is found to be the O(4) site in the basal plane in agreement with experiment. This interstitial is strongly bound to two neighbouring Cu(1) holes (i.e., two Cu²⁺ ions). All other configurations of the oxygen interstitial and the two holes are much greater in energy. This strong interstitial-hole association is not found in La₂CuO₄ [4], where the interstitial oxygen is in a different location away from the CuO₂ planes (at (0, 0.5, \approx 0.25) and is stabilised by four nearest-neighbour La³⁺ cations.

Our calculations suggest that the absence of superconductivity in the YBa₂Cu₃O_{6+X} system for $X < \approx 0.3$ can be accounted for by the predicted formation of holes which are trapped by negatively-charged oxygen interstitials at the O(4) position in the basal plane, rather than free holes in the CuO₂ planes, in broad agreement with Goodenough's view [37]. In Y_{1-Z}Ca_ZBa₂Cu₃O₆, on the other hand, the basal plane is devoid of both lattice and interstitial oxygen, so that holes introduced by Ca will be located, at least in part, in the CuO₂ planes leading to superconductivity. This would seem to be a plausible explanation for high T_C behaviour in Ca-doped materials with oxygen content less than ≈ 6.3 [32, 33]. As in La₂CuO₄ [2], calculated association energies between the Ca dopant and CuO₂ plane holes are very small, which contrasts markedly with the strong association of basal plane holes to added oxygen. Thus, the occurrence of two types of Cu atoms has very important implications for the superconducting behaviour of Y-Ba-Cu-O ceramics.

7 CONCLUSIONS

In this paper we have considered the calculated defect chemistry of a large number of complex cuprates containing Cu atoms in various coordinations, and have attempted to relate the differences in the defect properties to the high temperature superconducting behaviour. A comparison of calculated hole energies in systems containing 6-, 5- and 4-coordinated Cu suggests an increase in O 2p character with decreasing Cu coordination. The variations in hole and defect electron formation energies explain why La₂CuO₄ is easily oxidised and Nd₂CuO₄ readily reduced and consequently why materials with the T and T^* structures are hole superconductors, while T' compounds exhibit n-type superconductivity. In this context it is of interest to consider $Ca_{0.86}Sr_{0.14}CuO_2$ [38], the $n = \infty$ parent of the $A_2B_2Ca_{n-1}Cu_nO_{4+2n}$ (A = Bi, TI; B = Sr, Ba) superconductors. This contains 4-fold coordinated Cu in CuO₂ planes (as in the T' structure adopted by Nd_2CuO_4) separated only by Ca^{2+} ions and is itself not superconducting when doped p-type; n-type superconductivity has recently been reported in system $Sr_{1-x}Nd_xCuO_2$ [39], which is a lower valent analogue of $Nd_{2-x}Ce_xCuO_4$. Atomistic simulation studies of these two systems are currently in progress. We have also considered the defect properties of Y₂CuO₄. Experimental resolution as to whether this material can be made superconducting is still awaited.

Finally, in YBa₂Cu₃O₆, which contains Cu in both 5-fold (Cu(II)) and 2-fold (Cu(I)) coordination, we have drawn attention to the necessity to oxidise the 5-fold site for superconductivity, thereby explaining the observed difference in behaviour between $YBa_2Cu_3O_{6+X}$ and $Y_{1-Z}Ca_ZBa_2Cu_3O_{6+X}$ for $X < \approx 0.3$. In the form the incorporation of O²⁻ ions at the vacant O(4) sites localizes the accompanying holes in the basal plane, whereas substitution of Y by Ca leads to oxidation of, i.e., hole generation in, the conducting CuO₂ planes.

We reiterate that our calculations of the energies of the electronic defects in these materials cannot serve the role of appropriate "ab initio" electronic structure studies: they do, however, highlight the importance of the lattice contribution in determining the defect properties of these materials. Furthermore they appear to illustrate in a striking way qualitative differences between systems containing Cu in different environments. In summary, atomistic lattice simulations are able to calculate many important properties of high- T_c oxides that are clearly relevant to their superconducting behaviour.

References

- [1] J.G. Bednorz and K.A. Müller, "Possible high T_C superconductivity in the Ba-La-Cu-O system", Z. Phys. B: Condens. Matter, 64, 189 (1986).
 [2] N.L. Allan and W.C. Mackrodt, "The calculated defect properties of La₂CuO₄ related to high-T_C
- superconductivity", Phil. Mag., A58, 555 (1988).
- N.L. Allan, J.M. Lawton and W.C. Mackrodt, "A comparison of the calculated lattice and defect structures of La₂CuO₄, La₂NiO₄, Nd₂CuO₄, Pr₂CuO₄, Y₂CuO₄, Al₂CuO₄", Phil. Mag., B59, 191 (1989)
- N.L. Allan and W.C. Mackrodt, "Atomistic simulation of high-T_C oxides", J. Am. Ceram. Soc., 73, 3175 (1990); N.L. Allan and W.C. Mackrodt, "Simulation studies of structural and defect properties of high temperature superconducting materials", Adv. Solid St. Chem., 3, (1992) (in press).
- See, for example, M.S. Islam, M. Leslie, S.M. Tomlinson and C.R.A. Catlow, "Computer modelling studies of defects and valence states in La₂CuO₄", J. Phys., C21, L109 (1988); X. Zhang and C.R.A. Catlow, "Elastic and Coulombic contributions to real-space hole pairing in doped La₂CuO₄", J. Mater. Chem., 1, 233 (1991); X. Zhang and C.R.A. Catlow, "Computer simulation studies of defects and valence states in Ba_{1-x}K_xBiO₃", Physica, C173, 25 (1991).

- [6] H. Okada, M. Takano and Y. Takeda, "Synthesis of Nd₂CuO₄-type R₂CuO₄ (R = Y, Dy, Ho, Er,
- Tm) under high pressure", *Physica*, C166, 111 (1990).

 W.C. Mackrodt, "Defect energetics and their relation to non-stoichiometry in oxides", *Solid State* Ionics, 12, 175 (1984).
- N.L. Allan, D.L. Cooper and W.C. Mackrodt, "The practical calculation of interionic potentials in solids using electron gas theory", Mol. Sim., 4, 269 (1990). The details of the potentials used in the present paper are available from the authors on request.
- B.G. Dick and A.W. Overhuaser, "Theory of dielectric constants of alkali halide crystals", Phys. Rev., 112, 90 (1958).
- [10] C.R.A. Catlow and W.C. Mackrodt, "Theory of simulation methods for lattice and defect energy calculations in crystals", in Computer Simulation of Solids, edited by C.R.A. Catlow and W.C. Mackrodt, pp. 3-20, Springer-Verlag, Berlin (1982).
- [11] N.F. Mott and M.T. Littleton, "Conduction in polar crystals. I. Electrolytic conduction in solid salts", Trans. Faraday Soc., 34, 485 (1938).
- [12] N.L. Allan, J.M. Lawton and W.C. Mackrodt, "Calculated crystal and defect properties of ternary cuprates M₂CuO₃ (M = Ca, Sr): relationship to La₂CuO₄ and high-T_C superconductivity", J. Phys. Condens. Matter, 1, 2657 (1989).
- J.F. Bringley, S.S. Trail and B.A. Scott, "An ionic model of the crystal chemistry in the superconducting oxides of stoichiometry (RE)₂CuO₄", J. Solid State Chem., 86, 310 (1990).
- [14] Zhengquan Tan, J.I. Budnick, W.Q. Chen, D.L. Brewe, S-W. Cheong, A.S. Cooper and L.W. Rupp, Jr., "Observation of lanthanum- and rare-earth-site ordering in T-phase La_{2-X-Y}R_XSr_YCuO₄ (R = Sm, Eu, Gd, Tb)", Phys. Rev., **B44**, 7008 (1991).
- [15] Zhengquan Tan, J.I. Budnick, Sheng Luo, W.Q. Chen, S-W. Cheong, A.S. Cooper, P.C. Canfield and Z. Fisk, "X-ray absorption studies of cation ordering and valence in the T*-phase $La_{2-x-y}R_x$ $Sr_{\gamma}CuO_{4}$ (R = Sm, Eu, Gd, Tb and Dy)", Phys. Rev., **B44**, 7008 (1991).
- [16] R.D. Shannon and C.T. Prewitt, "Effective ionic radii in oxides and fluorides", Acta Cryst., B25, 925 (1969)
- N.L. Allan, M.J. Turner, A.L. McLean and W.C. Mackrodt, "The calculated crystal and defect chemistry of YBa₂Cu₃O₆", Ceramic Transactions, 24, 277 (1991).
- R.J. Cava, A.W. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajewski, W.F. Peck Jr. and L.W. Rupp Jr., "Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba₂YCu₃O_x", Physica, C165, 419 (1990).
- W.M. Temmerman, Z. Szotek, P.J. Durham, G.M. Stocks and P.A. Sterne, "Electronic structure of Y-Ba-Cu oxides and fluorides", J. Phys., C17, L319 (1987).
- [20] For example, T. Fujita and Y. Maeno, "Preparation and property of La_{1.85}Sr_{0.15}CuO₄ single crystal", Japan J. Appl. Phys., 26, L386 (1987).
- J.D. Jorgensen, B. Dabrowski, Shiyou Pei, D.G. Hinks, L. Soderholm, B. Morosin, J.E. Shirber, E.L. Venturini and D.S. Ginley, "Superconducting phase of La₂CuO_{4+\delta"}, Phys. Rev., **B38**, 11337 (1988).
- J.E. Schriber, B. Morosin, R.M. Merrill, P.F. Hlava, E.L. Venturini, J.F. Kwak, P.J. Nigrey, R.J. Baughman and D.S. Ginley, "Stoichiometry of bulk superconducting La₂CuO_{4+δ}: a superconducting superoxide?" *Physica*, C152, 121 (1988).
- Y. Tokura, H. Takagi and S. Uchida, "A superconducting copper oxide compound with electrons as the charge carriers", Nature, 337, 345 (1989).
- A.C.W.P. James, S.M. Zahurak and D.W. Murphy, "A superconducting copper oxide compound with electrons as the charge carriers", Nature, 338, 240 (1989).
- E. Takayama-Muromachi, Y. Matsui, Y. Uchida, F. Izumi, M. Onoda and K. Kato, "Indication of the superconducting phase in the Nd-Ce-Sr-Cu-O system", Japan J. Appl. Phys., 27, L2283 (1988).
- C.R.A. Catlow, W.C. Mackrodt, M.J. Norgett and A.M. Stoneham, "The basic atomic processes of corrosion: I. Electronic corrosion in MnO, CoO and NiO", Phil. Mag., B35, 177 (1977).
- P.W. Anderson, "Model for the electronic structure of amorphous semiconductors", Phys. Rev. Lett., 34, 953 (1975).
- B.K. Chakraverty, "Bipolarons and superconductivity", J. Phys. (Paris), 42, 1351 (1981).
- M.F. Hundley, J.D. Thompson, S.-W. Cheong, Z. Fisk and R.B. Schwarz, "Bulk superconductivity above 30 K in T* phase compounds", *Phys. Rev.*, **B40**, 5251 (1989).
- M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Q. Wang and C.W. Chu, "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure", Phys. Rev. Lett., 58, 908 (1987).
- C. Namgung, J.T.S. Irvine and A.R. West, "Absence of critical temperature plateau in quenched samples of YBa₂Cu₃O_X", Physica, C168, 346 (1990).

- [32] E.M. McCarron III, M.K. Crawford and J.B. Parise, "Observation of superconductivity in $(Y_{1-y}Ca_y)$ Ba₂Cu₃O₆", J. Solid State Chem., 78, 192 (1989).
- [33] C. Legros Glédel, J.F. Marucco, E. Vincent, D. Favrot, B. Poumellec, B. Touzelin, M. Gupta and H. Alloul, "Influence of the oxygen content on the critical temperature T_c and the thermopower of
- Y_{0.7}Ca_{0.3}Ba₂Cu₃O₂", *Physica*, C175, 279 (1991).

 T. Wada, Y. Yaegashi, A. Ichinose, H. Yamauchi, and S. Tanaka, "Control of the hole concentration in the $YBa_2Cu_3O_{6+Z}$ -type superconductors $(Yb, Ca)(Ba, Sr)_2Cu_3O_{6+Z}$ with low and high Ca contents", *Phys. Rev.*, **B44**, 2341 (1991).
- [35] M.E. Parks, A. Navrotsky, K. Mocala, E. Takayama-Muromachi, A. Jacobson and P.K. Davies, "Direct calorimetric determination of energetics of oxygen in YBa₂Cu₃O_x", J. Solid State Chem., 79, 53 (1989).
- H. Verweij, W.H.M. Bruggink, R.A. Steeman, E. Frikkee and R.B. Helmholdt, "Oxidation enthalpy of YBa₂Cu₃O_{6+Y} in relation with phase behaviour and stoichiometry", *Physica*, C166, 372 (1990).
- [37] J.B. Goodenough, "Chemical and structural relationships in high- T_C materials", Supercond. Sci. Technol., 3, 26 (1990).
- [38] T. Siegrist, S.M. Zahurak, D.W. Murphy and R.S. Roth, "The parent structure of the layered high-temperature superconductors", Nature, 334, 231 (1988).
- M.G. Smith, A. Manthiram, J. Zhou, J.B. Goodenough and J.T. Markert, "Electron-doped super-
- conductivity at 40 K in the infinite-layer compound $Sr_{1-\gamma}Nd_{\gamma}CuO_{2}$ ", Nature, 351, 549 (1991). B. Grande, Hk. Müller-Buschbaum and Z. Schweizer, "Zur Kristallstruktur von Seltenerdmetalloxocupraten: La₂CuO₄, Gd₂CuO₄", Z. Anorg. Allg. Chem., 428, 120 (1978).
- [41] J.M. Longo and P.M. Racah, "The structure of La₂CuO₄, Gd₂CuO₄", Z. Anorg. Allg. Chem., 428, 120 (1978).
- J. Gopalkrishnan, M.A. Subramanian, C.C. Torardi, J.P. Attfield and A.W. Sleight, "Properties and structures of $R_{2-X}ACuO_4$ phases: R = La, Pr, Nd; A = Sr, Pb, Cd", Mat. Res. Bull., 24, 321 (1989).
- Chr. L. Teske and Hk. Müller-Buschbaum, "Zur Kenntis von Ca₂CuO₃ und Sr₂CuO₃", Z. Anorg. Allg. Chem., 379, 234 (1970).
- [44] W.C. Mackrodt, "Calculated lattice structure, stability and properties of the series Bi₂X₂CuO₆ $(X = \text{Ca}, \text{Sr}, \text{Ba}), \text{Bi}_2 X_2 Y \text{Cu}_2 O_6 (X = \text{Ca}, \text{Sr}, \text{Ba}; Y = \text{Mg}, \text{Ca}, \text{Sr}, \text{Ba}) \text{ and } \text{Bi}_2 X_2 Y_2 \text{Cu}_3 O_{10}$ (X = Ca, Sr, Ba; Y = Ba, Sr, Ca, Mg)", Supercond. Sci. Technol., 1, 343 (1989). [45] C.C. Torardi, M.A. Subramanian, J.C. Calabrese, J. Gopalakrishnan, E.M. McCarron, K.J.
- Morrissey, T.R. Askew, R.B. Flippen, U. Chowdhry and A.W. Sleight, "Structures of the superconducting oxides Tl₂Ba₂CuO₆ and Bi₂Sr₂CuO₆", Phys. Rev., B38, 225 (1988).